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Notes on long-crested water waves 
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Fully three-dimensional surface gravity waves in deep water are investigated in the 
limit in which the length of the wave crests become long. We describe an  analytic 
solution to fourth order in wave steepness, which matches onto known short-crested 
wave solutions on the one hand and onto the well-known two-dimensional progressive- 
wave solution on the other. I n  the progressive-wave limit a particular solution in 
which the wave crests are semi-finite is given to sixth-order accuracy. These solutions 
are part, of a more general set of solutions which are found from a nonlinear 
SchrGdinger equation. 

1. Introduction 
Short-crested water waves, investigated in the companion paper by Roberts (1983) ; 

hereinafter referred to as (I)), can be identified by two dimensionless parameters ; the 
wave steepness h and an angle 6 characterizing the aspect ratio of the basic periodic 
rectangle. I n  the limit as 0 tends to 90" the waves become long-crested (see figure 
7 ( d )  in (I) for such a wave) and i t  is the form of the waves in this limit which is 
examined in this paper. The waves are not aptly described by the amplitude 
expansion discussed in (I)  because the radius of convergence of the expansion tends 
to zero as B --f 90". This is due to the divisors of the ( 1 ,  n) harmonic coefficients (that 
is the cos [l (px-uwt)] cos [ y z ]  terms) which all tend to  zero (see tables 1 and 2 in (I)). 
These small divisors for # near 90° can be attributed to the presence of strong 
singularities occurring at complex h ; their location, given approximately by the 
empirical relation 

where 
h = +e*@"[1.82/3+0.16p2], ( 1 . 1 )  

p = +7C-B, (1  4 

moves in to  the origin as 6 tends to 90°. These singularities, unlike the singularities 
occurring due to harmonic resonance in short-crested waves, are not simple poles. 
However, the singularities lie off the real h-axis and hence the Pad6 transform (for 
example) will produce converged answers for real h. Thus a t  finite height there is a 
continuous variation between short-crested waves and the longest long-crested wave, 
and vice versa. 

The structure of long-crested waves is analysed by assuming that derivatives in 
the direction Oz along the crest are small compared with those in the direction Ox 
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of propagation. A similar approach is used by Whitham (1976) to obtain a nonlinear 
approximation to edge waves propagating along a nearly vertical beach. To the same 
order, solutions described here involve only a slight variation to Whitham’s equation 
(96). The solutions that are doubly periodic and, as in (I), correspond at first order 
to the superposition of two wavetrains of equal amplitude and frequency, have the 
form 

sn (hz/m+Im) cos ( x - t ) ,  (1.3) 

where the notation of Abramowitz & Stegun (1965) is used for the Jacobian elliptic 
function. In the case of long period in z ,  i.e. m+ 1 ,  waves are closely two-dimensional 
except near the ends of each crest. There the slopes in the z-direction are O(h2)  instead 
of the O(h3) one would expect from the linear solution. At the other extreme, small 
m, the solution approaches that for short-crested waves. 

To match onto the short-crested solution of (I) it is necessary to modify Whitham’s 
(1976) equation (96) slightly; this is done in $2. In  $3  the calculation is analytically 
extended to the fourth order in the wave steepness. Although it is only valid over 
part of the parameter regime this solution is currently the highest-order analytic 
formula available for calculating the properties of short-crested waves. 

I n  the limit as wave crests become very long, two distinct solutions are possible. 
If both ends of the crest are a t  a very large distance, the limit is the two-dimensional 
progressive wave. On the other hand, if one end of the crests is kept at a finite position 
a semi-infinite-crested wave is obtained. Along a line perpendicular to  the crests there 
is a phase jump of one half-period between two uniform wavetrains (see figures 4 
and 5).  This solution corresponds to the soliton of maximum amplitude for the 
‘defocusing ’ nonlinear Schrtidinger equation (Zakharov & Shabat 1973). These 
solitons were first studied in optics, and are called ‘dark’ solitons since the wave 
amplitude is lower in the soliton than in the carrying wavefield. 

I n  $5 these long-crested solutions are placed in the wider context of slow variations 
of a nearly uniform wavetrain. A substantial review of this area is given by Yuen 
& Lake (1982) ; we pick out only those aspects of particular relevance to long-crested 
waves and wave reflection. 

2. Leading-order solution 

independent variables 

where p = cosp, q = sinp, and w is the frequency of the wave. We look for a surface 
shape y(X, 2)  and a velocity potential 4(X, y, Z), periodic in X and Z with period 
2x, such that the velocity potential satisfies the transformed Laplace equation in the 
body of the fluid 

(2.2) 

There are two boundary conditions a t  the free surface : the kinematic condition that 
no fluid crosses the surface can be written as 

Following (I) we non-dimensionalize the problem and then introduce the scaled 

x = p x - w t ,  z = qz, (2.1) 

P24xx + 4 y y  + q24zz = 0 (Y < V ( X >  2)). 

while the condition of constant pressure is 
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Infinitely deep in the fluid there must be no motion, and so we enforce the necessary 
condition 

$y+O as y+-m. (2.5) 
To derive the long-crested wave solution, we suppose /34 1 and find that the 

appropriate scaling is p = O(h) .  Hence the wavenumbers in the x- and z-directions 
may be written 

where Q is now the aspect-ratio parameter. We also expand the unknown functions 
in powers of the wave steepness : 

q = sinp = Qh, p = cosp = (1  -Q2h2)i,  (2.6) 

a3 a, a, 

7 = Z hr7r(x jz ) j  $ = Z hr$,(X,y, z), w = Z hrw,. (2.7) 
r-1 r-1 r-o 

Upon substituting (2.6) and the assumed perturbation form (2.7) for the dependent 
variables into the governing differential equation (2.2) and the boundary conditions 
(2.3)-(2.5), we obtain a set of equations which may be successively solved for the 
unknown functions. The equations are of the form 

$ r y + O  as y+-m, 

WoVrX + $ r y  = Fr, 

- ~ ~ $ , ~ + l j l ,  = G, ( r  = 1,2,3, ...), 

where 
combinations of the lower-order functions (note that Fl = G, = 0). 

and $o are defined to be zero and where F, and G, are some nonlinear 

The first-order linear solution to (2.8) is simply 

where the as-yet-arbitrary function H ,  will be determined by a secularity condition 
obtained a t  a higher order. In  general, a t  the rth order the forcing F, and G, will 
contain some component in sin (X) exp (y) which would force secular terms into the 
expression for $, and 7,. Setting the coefficient of this forcing to zero and using the 
definition of the perturbation parameter and the periodicity gives us a second-order 
differential equation and eigenvalue problem for Hr-2 and w,-,. Also a t  the rth order 
we will have to introduce a homogeneous solution of the linear problem into the 
expressions for $, and y,, H , ( Z )  sin (X) exp (y) and H , ( Z )  cos ( X )  respectively. 

A t  second order the non-secularity condition just gives w1 = 0. However, a t  third 
order we obtain the nonlinear equation 

&'HI'+ (4w2 + Q 2 )  H ,  - 2 e  = 0, (2.10) 

where the primes denote derivatives with respect to  2. This equation has the same 
form as equation (96) of Whitham (1976). The differences are due to the specific 
periodicity in z and the variation of the x-direction wavelength implied by (2.6). 
Equation (2.10) may immediately be integrated once to  give 

Q 2 H y +  (4w2 + Q') Hf - Hi - D  = 0, (2.11) 
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where D is the constant of integration. The only real-valued solution of this equation 
which has the required periodicity is 

H,(Z) = sn(2KZ/nIm), 

0 2  = +[l+ l/m-Q2], (2.12) 

where 
D = l /m,  

Q2 = n2/4mK2, (2.13) 

and K = K ( m )  is the complete elliptic integral of the first kind (see figure 1 for a graph 
of Q versus m). Equation (2.13) implicitly gives the elliptic function parameter m in 
terms of the parameter Q .  For values of Q which are small it can be seen that m is 
very close to 1 ; asymptotically we find 

m+l- l6exp(-x /Q)  as Q-0 .  

I n  the limit as Q gets large, that  is m+O, (2.13) gives 

and so 
Q2 = l/m-~-&m+O(m2), 

H,+sin (Z),  w 2 + Q  as m+O, (2.14) 

which agrees with the short-crested wave solution (apart from the trivial shift in the 
2-dependence). Provided that the higher orders in this long-crested wave expansion 
can be calculated, we see that there is indeed a continuous limit from finite-amplitude 
short-crested waves to these long-crested waves (see figure 3 for a sequence of wave 
profiles illustrating this transition). The reason that zero-divisors occur as O+ 90' 
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in the short-crested wave amplitude expansion of (I) is that the perturbation 
expansion implicitly assumes that higher Fourier harmonics are only generated at 
higher orders in the expansion. But a Fourier decomposition of an elliptic function 
requires order- 1 Fourier coefficients (although they may be numerically small). Thus 
as 6'+ 90' the coefficients of the higher harmonics of the short-crested wave expansion 
become large in an endeavour to make their appropriate contribution (order h )  to  
the solution. This reasoning is quite general and explains equally well the behaviour 
of the coefficients near other harmonic resonances. 

From this solution we can calculate to leading-order accuracy the mean energy 
density in long-crested waves. It is 

(2.15) 

For small m this reduces to ih2, which is the expression for linear short-crested waves; 
form near 1 it  reduces to fh2, which is the appropriate expression for two-dimensional 
progressive waves. Equation (2.15) describes the initial upwards bend of the S-shaped 
energy curves for long-crested waves (see figure 6 (e) in (I)). 

3. Fourth-order analytic solution 

w, with the solution 

as expected. Similarly we expect that H,, = w,,+~ = 0 for r = 2 , 3 , 4 ,  . . . . At the fifth 
order the non-secularity condition gives the following linear equation for H, and w p  : 

(3.2) 
where 

(3.3) 

Carrying the expansion to  the fourth order we find an equation relating H, and 

H2(2) = 0, w3 = 0, (3.1) 

Q2Hi + (40, + Q2 - 6 H 3  H, = g3(Z; w4), 

g3(Z;w4) = -(4w4+6/m+3w;) H , +  l6wzH;j-3H:. 

At higher orders in this expansion the equation that H ,  has to satisfy to ensure 
non-secularity will be of the same form as (3.2) but with different forcing, gr(2; w ~ + ~ )  
say, on the right-hand side. An equation such as (3.2) can be integrated twice by using 
(2.10). The general solution is 

(3.4) 

where 

with p, and y, constants of integration. The value of p, is chosen to eliminate the 
double pole singularity in the integrand of (3.4) at Z = &z. Since I ,  will be a symmetric 
function about Z = in, this choice of p, will ensure that the integral in (3.4) is 
integrable. The value of is then chosen so that the function H ,  satisfies the 
periodicity requirements. Finally y, is chosen so that H,(O) = 0, as any other choice 
will lead to a trivially different solution where the phase in the 2-direction varies with 
amplitude. Hence the solution of (3.2) and (3.3) is 

1, = ~r + fsr(Z; wr+1) H ;  d ~ ,  (3.5) 
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FIGURE 2. The first two coefficients of the frequency-correction expansion (2.7) as a 
function of the parameter Q. ;:;r( =o.5\ ~ 
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FIGURE 3. The structure of long-crested waves along the crest for three values of &. The dominant 
shape is that of H , ( Z ) ,  given by (2.12), while the higher-order corrections involve H 3 ( 2 ) ,  given by 
(3.6). 
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where u = 2KZ/x, E = E(m) is the complete elliptic integral of the second kind and 
Z ( u )  is Jacobi's zeta function, which will be distinguished from the coordinate Z by 
always including the argument of the function. The above analytic solution has been 
confirmed by calculating numerical solutions of (3.2). A plot of w2 and w4 versus Q 
is shown in figure 2. The appreciable flattening of the crest of the leading-order 
z-direction profile given by H ,  is enhanced, especially for small Q ,  by the correction 
due to H ,  (figure 3). 

The fourth-order solution of the long-crested system of equations, in terms of the 
quantities defined by (2.12), (2.13) and (3.6), is 

(3.7) 

Incidentally this solution is currently the highest-order analytic solution available 
for calculating finite-crested waves, although infinitesimal short-crested waves are 
not represented as well as they are by other analytic perturbation expansions. 

4. Semi-infinite-crested wave 
In the limit as Q -2 0 we obtain a train of gravity waves propagating in the x-direction 

with a 180" phase shift occurring in the x-dependence in the vicinity of z = 0 (see 
figures 4 and 5 ) .  In  the z-direction each wave crest starts in the vicinity of the phase 
jump and extends to infinity in one direction ; hence the name ' semi-infinite-crested 
wave'. Alternatively, if the origin of z is taken a t  the centre of a wave crest then the 
limit Q -20 gives a two-dimensional wave. 

Rather than take the limit of the long-crested wave solution (3.7), it is more 
convenient to derive the solution afresh from the equations. We assume the z-direction 
derivatives are of order h and so set q2 = h2 and p 2  = 1. Substituting this and the 
assumed perturbation expansion (2.7) into the governing equations and grouping like 
powers of h, we can then solve the resulting set of equations in succession. These 
equations were solved analytically to find the solution up to sixth-order quantities. 
Writing, for brevity, T = tanh (Z), we find 

= i +p2+4h4+ht~+o(h*), (4.1) 

7 = hT cos (2) 

+ h 2 p  cos (22)  

+ h 3 { [ - # P + + , ( l  -F)  (Z+T)]cos(x)++j!PcOS(32)}  

+ h4{4(1 -P)  ( 3 P -  1) + [&(!P+ 1 2 P - 9 )  +$(1 -P)  zq cos (2s) 

+#T4 cos (4x)) 
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+ h5{[&( - 1217T5 + 3740P - 3156T) 

+&(l-P) (1722-63ZP- 12Z2T)]co~ ( 2 )  

+ [&(75T5 + 168P - 144T) + (1 - P)  &ZP]  cos (32) +ET5 cos (52)) 

+h6{a(1-!P) ( -1+6P-5T4+4ZT-6ZP)  

+ [A( - 2T6 + 71 6T4 - 789P + 36) 

+A( 1 - P)  (104ZT+ 4ZP + 32’- 9Z2P)]  cos (22) 

+I1&( 187T6 + 300T4 - 270P) + ( 1  - P)$Z!P] cos (42) +gTg cos (62)) 

+ (ah’ ) ,  (4.2) 

4 = hl’sin ( x )  exp (y) 

+ h 3 [ - + P + ( 1 - P )  (yT+$?7]sin(x)exp(y) 

+ h4LT4 - h] sin (22)  exp (y) 

+h5{[&(-269T5+728T3-681T)+(I -P)  (&T 

++$5(40-99T2)+y2(2-3P) 

+&Z( 1 - 3 P )  -+Z2T)] sin (2)  exp (y) 

+AT5 sin (32) exp (3y)) 

+ h6{ [22(8T6 - 6T4 - 3!P + 3) 

+P(1 -P) (-y(3-5P)+2ZT)]sin (2x)exp(Zy) 

+&P sin (42) exp (4y)) 

+ o(h7) .  (4.3) 

In the limit as 2 + 00,  where the solution looks like a uniform train of waves, we indeed 
find agreement with well-known analytical expansions for infinite-crested Stokes 
waves (see De 1955). I n  particular, the series for the frequency correction is identical 
with that €or two-dimensional waves. 

5.  Discussion 
The solutions described above are the natural extension of the short-crested waves 

discussed in (I). This whole class of waves may be interpreted as those wavefields 
obtained by the perfect reflection of a uniform wavetrain from a straight reflector, 
e.g. a vertical wall. The case considered in this paper corresponds to  waves which are 
incident, nearly parallel to  the reflector, i.e. /3 4 1 .  

The physical realization of short-crested waves by reflection is straightforward. 
However. long-crested waves are more difficult to create in this way. Their wave 
pattern has a wavelengbh Zn/kP normal to the reflector; hence linear ray theory shows 
that a t  least a length 2x/kp2 of reflector is necessary before any regular wave pattern 
can be established. At that distance the linear diffractive effects associated with the 
edge of the reflected region also have an extent O(l/k/3), indicating that a somewhat 
greater distance is required. I n  fact Yue & Mei (1980) show that steady conditions 
near a reflecting wall are established more quickly for nonlinear waves than for linear 
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FIGVRE 4. Perspective drawing of four wavelengths of the free surface of the semi-infinite-crested 
wave calculated from the sixth-order solution (4.2) evaluated at a wave steepness of h = 0.4. 
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FIGURE 5.  Contours of two wavelengths of the same semi-infinite-crested wave as that  shown in 
figure 4; the wave crests continue virtually unchanged t o  z = f m. The contour interval is 0.06, 
and the zero-level is shown by the dashed contour. 

waves (see their figure 2). However, the nonlinear solutions differ markedly from the 
linear solution. A uniform wavetrain propagating along the wall with a steadily 
increasing width is created. Yue & Mei interpret the solution as a jump in wave 
properties. Peregrine (1983) discusses the structure of the wave jump in more detail. 
There are several ways of interpreting this structure, but in the present context it 
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is useful to think of the incident waves feeding energy to the waves by the wall and 
being partially reflected in the process. The resulting wavefield in the growing jump 
region can then be interpreted a t  any point as the incident wave plus its partial 
reflection. Thus the long-crested waves described here are typically not generated by 
reflection ; instead we propose that they will be realized through weak diffraction or 
refraction effects. 

The partial reflection of waves (or, equivalently for linear waves, two wavetrains 
of arbitrary relative amplitude but the same frequency) forms a more general class 
of solutions which includes those considered in (I)  or above as that special subset in 
which the amplitudes are equal. The case where two wavetrains only differ slightly 
in their propagation direction could be incorporated in the present work by adding 
a term corresponding to a surface elevation G , ( Z )  sin ( X )  to the linear solution (2.9). 
However, the more general solutions corresponding to (2.12) are more readily found 
from wave-modulation equations. For example, the nonlinear Schrodinger equation 
used in Yue & Mei (1980) has solutions of the form 

which reduce to solutions of the type (2.12) when a, = 1 ,  c = 0 (for details see the 
appendix). 

Solutions of the form (5.1) and (2.12) indicate that there is a tendency for a 
wavefield of waves with almost equal wavenumbers to be organized in such a way 
that a large part of the surface locally has the form of infinite-crested waves. (As m -t 1 ,  
the variation of sn and cn is concentrated in a small part of their period.) An 
important consequence is to confirm the relevance of the extensive analyses that have 
been done on infinite-crested waves. 

The phase variation of solutions (5.1) may be found from (A 4) in the Appendix 
and is given explicitly in (A 10) for solitons. For long-crested waves, m - t l ,  there 
is a phase change across each minimum of I A 1 .  The phase change is equal to one 
half-period when [ A [  has a zero; in other cases ‘staggered’ wave crests occur. These 
are well illustrated in figure 4 of Su (1982), which gives two photographs of wave 
patterns arising from the generation of a uniform wavetrain. 

The same type of analysis holds for finite water depth; e.g. Yue & Mei (1980) include 
finite-depth waves in their analysis, and these solutions have the same character. 
Qualitative features of long-crested waves should be readily observable, particularly 
in waves approaching a beach where two factors contribute. In  deep water the spread 
of wavenumbers in the wavefield may be broad, but as the waves propagate 
shorewards they refract and the wavenumbers become much more concentrated in 
wavenumber space ; a situation which may be modelled by two interacting wavetrains 
propagating in nearly the same direction, i.e. long-crested waves. Also, as the waves 
approach the beach they steepen (becoming more nonlinear) and thus enhance the 
observability of the motion (until eventually they break). 

The higher-order analysis of $93 and 4 indicates that  the effects of the lower-order 
nonlinear terms are accentuated. It has not proved possible to proceed far enough 
to describe waves of near-limiting steepness. The only comparable higher-order work 
is that  of Dysthe (1979), who obtains a modification to the nonlinear Schrodinger 
equation. 

It is almost certain that long-crested deep water waves are subject to the same 
instabilities as infinite-crested waves; €or experimental evidence see Xu (1982). A good 
discussion and survey is given by Yuen & Lake (1982). However, instabilities are of 
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lesser importance in water of shallower depth, and long-crested waves are commonly 
observed near beaches. 

There are more long-crested waves than those described above. By searching for 
bifurcations of the Stokes-wave solution, Saffman & Yuen (1980) found two sets qf 
solutions of the Zakharov equation. This equation (Zakharov 1968, with minor 
corrections by Crawford, Saffman & Yuen 1980) is an integrodifferential equation 
which is of the same order, in its nonlinear approximation, as the analysis of $ 2  or the 
nonlinear Schrodinger equation, but allows a wider range of component waves. Such 
solutions can be more accurate than solutions of the nonlinear Schrodinger equation 
since harmonics of the fundamental waves are included. On the other hand, they are 
not as accurate as the special cases dealt with in the body of this paper. 

AJR would like to acknowledge the support of the Association of Commonwealth 
Universities while this research was being carried out, Dr H. E. Huppert for his advice 
and Prof. Fitch for his help with CAMAL, which computed and checked much of the 
algebra. 

Appendix 

dimensionless form as 
The nonlinear Schrodinger equation used in Yue & Mei (1980) may be written in 

2iA,+AZZ-2]A12A = 0, (A 1 )  

where the linear approximation to the velocity potential is 

h A ( X ,  2) exp [ky+i(kz-wwt)] + complex conjugate, (A 2 )  

in deep water. The frequency of the wave motion is, to this order of approximation, 
fixed. 

Equation (5.1) describes a wave solution whose bulk properties vary only with 
f; = Z - C X  (hence the modulations of the wavetrain propagate along lines 2 = c X ) .  
To derive such a solution we substitute the form 

(A 3) A ( X ,  2) = 4 5 )  exp [ipX+ilCc(S)I, 

where a(5) is the amplitude modulation and $(() is the phase modulation, into (A 1) .  
This leads to the equations 

= c + B,/a2, (A 4) 

(A 5) a’, + (p + c 2 )  a2 -a4 + B:/a2 = B,, 

where B,  and B, are constants of integration and ,u is introduced to permit the 
s-wavelength to change with the wave steepness. Equation (A 5) corresponds to  
(2.1 1 ) .  

The substitution 
b = a, (A 6) 

(A 7 )  

(A 8) 

allows (A 5 )  to be written in the form 

#b’2 = 2(b , -b )  ( b 2 - b )  (b,-b), 

b = b, - (b,  -b3 )  cn2 [ (b ,  - b,)i f;lm], 

where b, 3 b, 3 b, 3 0. This has the solution 
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In the present context b, may be chosen to  be unity without loss of generality, and 
hence (A 8) is equivalent to (5.1). 

The phase variation is obtained from (A 4). I n  the general case $(<) can be found 
in terms of an elliptic integral of the third kind. For the soliton case, corresponding 
to m = 1 ,  we find 

tan$ = a,(l-a~)~tanh(a,,iJ. (A 10) 

It may be seen from the coefficient of a2  in (A 5 )  that  for any given solution, for 
example (A 8), there is an arbitrariness as to how the constants c and ,LL are chosen. 
However, there is no intrinsic difference in those solutions for which p+c2 has the 
same value. The arbitrariness corresponds to a (small) variation in the choice of the 
X-direction. 

The above solutions may be compared with those for the nonlinear Schrijdinger 
equation which has the opposite sign to (A 1 )  for the nonlinear terms. These solutions 
are given by Chu & Mei (1971). 

To compare solution (A 8) with superposed linear waves note that, apart from an 
amplitude factor, two waves of the same frequency may be put in the form 

5 = sin a cos (px - wt + qz) + cos a sin (px - wt - pz), (A 11) 

without loss of generality, by suitable choice of the coordinate system Oxx. This may 
be rewritten 

where 

that is 

5 = Re(A(z)exp[i(px-wwt)]}, (A 12) 

(A 13) A(z) = -sin (pz- a )  -i cos (qz+ a )  ; 

2 sin 2a 
IA(z)I2= (1+sin2a) 
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